lokalise

Vue internationalization:
A simple guide to building
a multilingual app

If you're a Vue developer just getting started with
internationalization (i18n) - you're in the right place. Read this
step-by-step tutorial and learn how to set up a Vue.js website
with i18n support to build a multilingual app.

Internationalization is an yet often missed step in software develop-
ment. Setting up a website with internationalization (i18n) support sounds
daunting at first, but it’s actually easier than one might think. For this tutorial we

will be using , a great package from the core Vue devs.
Loosely based on the original article by Dobromir Hristov. with author’s
permission.

In this article we are going to cover the following topics:

Installing and setting up Vue I18n

Adding support for multiple languages

Storing and using translations

Implementing pluralization

Datetime and number localization

Switching the locale

Integrating Vue Router and making it work with multiple locales

Lazy load translation files based on the chosen locale

Read user preferred locale and adjust the default language based on it

The source code is available on

A working demo can be found at:

Vue internationalization: a simple guide to building a multilingual app 2

https://lokalise.com/blog/customer-service-language/
https://vuejs.org/
https://kazupon.github.io/vue-i18n/
https://medium.com/hypefactors/add-i18n-and-manage-translations-of-a-vue-js-powered-website-73b4511ca69c
https://github.com/bodrovis-learning/Lokalise-source/tree/master/vue-i18n
https://lokalise-vue-demo.herokuapp.com/

Table of contents
R A i,

Initial Setup of the Vue.js App

Setting Up Lokalise

Performing Simple Translations

Storing Vue Translations in JSON Files

Uploading Translation Files to Lokalise

Using Vue I18n in Templates

Downloading Translation Files from Lokalise

Changing the Language
Exploring Vue I18n Features

Pluralization

Date and Time

Working with Currency

Setting the Language as a Route Parameter

Installing Vue Router

Managing Views

Adding Routes with Vue I18n Support

Adjusting the Navigational Links
Rewriting URL After Locale Switch
Introducing Lazy Loading

Introducting Translation Plugin

Refactoring I118n Config

Refactoring Main File and Routes

Refactoring Components

Reading User Preferred Language

Conclusion

Vue internationalization: a simple guide to building a multilingual app

0 0 NN G

10
11
14
14
16
18
20
20
20
23
26
27
29
29
32
33
35
38
41

Initial Setup of the Vue.js App

In this Vue I18n tutorial we are going to utilize so be sure to install it
as follows:

npm install -g @vue/cli

Next, create a new demo project named vue-i18n-demo:

vue create vue-il8n-demo

I've chosen to use the default preset for this app (Babel and ESLint).

Lastly, cd into the app folder and install the Vue I18n plugin:

cd vue-i1l8n-demo
vue add 118n

You will be asked some questions regarding the project setup. I've provided the

following answers:
The locale of project localization — en

The fallback locale of project localization — ru (you may choose any
other language)

The directory where store localization messages of project — locales

Enable locale messages in Single file components — N

Vue internationalization: a simple guide to building a multilingual app 4

https://cli.vuejs.org/

After installing Vue I18n, the following operations will be performed for you:

1. Create a vue.config. js file in the project’s root. This file contains general
settings for the I18n plugin (default language, fallback, etc.).

2. Create an .env file in the project’s root. We will return to this file later.

3. Create an src/i18n. js file. This file actually imports the necessary I18n
modules and does the initial setup.

4. Tweak src/main. js to add I18n functionality to the app.

5. Create src/locales directory with en. json and ru. json files which will
store our translations.

Now the setup is done, and we can proceed to the next step!

Setting Up Lokalise

Managing translations for multiple languages is a pretty complex task, especially
for larger sites. Things become even more complex if you have limited proficien-

cy in the supported languages. What should you do in such cases? Use a
!

Meet Lokalise, the leading translation management service which allows you
to easily manage translation files, collaborate with translators, order profes-
sional translations, enable integrations with various services, and much more.
Throughout this article I will briefly explain how to get started with Lokalise. For
now, you will need to perform the following steps:
(no credit card is required).
Proceed to > API tokens.
Generate a new read-write token (make sure to keep it safe).

and unpack it somewhere on your PC.

Vue internationalization: a simple guide to building a multilingual app 5

https://lokalise.com/blog/choose-translation-management-system/
https://lokalise.com/blog/choose-translation-management-system/
https://app.lokalise.com/signup?_ga=2.229892892.1063826743.1616401148-1074148468.1600425518
https://app.lokalise.com/profile?_ga=2.192130730.1063826743.1616401148-1074148468.1600425518
https://github.com/lokalise/lokalise-cli-2-go/releases

cd into the created directory

Create a new Lokalise project by running lokalise2 project create
--name VuelS --token YOUR_TOKEN_HERE --languages “[{\”lang_
1so\”:\”ru\”},{\”1lang_iso\”:\”’en\”}]” --base-lang-iso “en”.

Adjust the supported languages as necessary.

The above command is going to return an object with the project details.

Copy the project_id as we will need it later.

The basic setup is done, and we can proceed to the next part!

Vue internationalization: a simple guide to building a multilingual app 6

Performing Simple
Translations

Storing Vue Translations in JSON Files

To , let’s see how to perform basic translations. For in-
stance, we may want to greet our users on the main page of the site. To achieve

that, add English translation to locales/en. json:

{
“main”: {
“welcome”: “Hello from {company}!”

}
}

There are a few things to note here:

Your translations are stored in simple JSON files. The key will be used
in your code and automatically substituted with a proper value based

on the chosen language.

(this is especially useful for larger sites with many

translations).

Keys support interpolation: take a look at the {company?} part in the

example above. This placeholder will be replaced with an actual com-

pany name that we are going to provide in the code. If you are a fan of
(like me), then you may also use

%{company}.
Now add Russian translations to the locales/ru. json file:

Vue internationalization: a simple guide to building a multilingual app

https://kazupon.github.io/vue-i18n/started.html#html
https://kazupon.github.io/vue-i18n/guide/formatting.html#named-formatting
https://rubyonrails.org/
https://kazupon.github.io/vue-i18n/guide/formatting.html#support-ruby-on-rails-i18n-format

{
“main”: {
“welcome”: “Bac npuBetcTByeT {company}!”
}
}

Great! The translations are ready, and we can use them in our app.

Uploading Translation Files to Lokalise

After creating the initial translation files, we can upload them to the Lokalise

project we created earlier. To achieve this, run the following commands:

lokalise2 file upload --lang-iso en --file
“PATH_TO_PROJECT\src\locales\en. json” --project-id
PROJECT_ID --token YOUR_TOKEN

lokalise2 file upload --lang-iso ru --file
“PATH_TO_PROJECT\src\locales\ru.json” --project-id
PROJECT_ID --token YOUR_TOKEN

PROJECT_ID is the identifier that you received in the previous step when creating

a new project.

Using Vue 118n in Templates

Now let’s see how to utilize the created translations in our pages. In fact, all you
need to do is utilize a $t function and pass a translation key to it. Let’s tweak the
template within the App.vue file:

<template>
<div id="app”>

Vue internationalization: a simple guide to building a multilingual app 8

<p>{{ $t(‘main.welcome’, {company: ‘Lokalise’}) }}
</p>
</div>
</template>

main.welcome is the translation key. We are using dot (.) because the key is nest-
ed. The company: ‘Lokalise’ part provides the value for the {company?} place-
holder within the translation file.

We are not going to use the default Hel1oWorld component, so remove the fol-

lowing line from the App . vue file:

import HelloWorld from ¢./components/HelloWorld.vue’

Also, remove HelloWorld from the components property and delete the

components/HelloWorld. vue file.

Now you may boot the app:

npm run serve

Proceed to localhost : 8080 — the welcoming message should be displayed for
you. In order to make sure that the Russian translation works as well, you can
openthe i18n. js file and set ‘ru’ as the locale property:

export default new VueIl8n({
locale: ‘ru’, // <-------
fallbackLocale:
process.env.VUE_APP_T18N_FALLBACK_LOCALE |1 ‘en’,
messages: loadlLocaleMessages()

i)

Vue internationalization: a simple guide to building a multilingual app

Don’t forget to undo the above change once you’re done testing!

Downloading Translation Files from Lokalise

Once you have edited your translations on Lokalise, download them back into

your project by running:

lokalise2 file download --unzip-to
PROJECT_PATH\src\locales --format json --token
YOUR_TOKEN --project-id PROJECT_ID

Vue internationalization: a simple guide to building a multilingual app 10

Changing the Language

So, our application is now multilingual, but there’s no option to actually
via the user interface. Let’s add this feature now!

I suggest creating a new component called LocaleSwitcher which is going to han-
dle all switching logic. Create a new src/components/LocaleSwitcher.vue file:

<template>

<li v-for="1locale in locales” :key="locale”
@click="switchLocale(locale)”>

{{locale}}

</1li>

</template>

This is a basic unordered list which is going to contain our supported locales.
Once the list item is selected, we call up the switchLocale() method and per-
form the actual change.

The next step is to provide an array of supported locales. We can just hard-code

them, but that is not very convenient. Instead, let’s take advantage of the .env

file which I mentioned earlier. Add the following line:

VUE_APP_T18N_SUPPORTED_LOCALE=en,ru

Now use this environment variable to produce an array of locales within the Lo-

caleSwitcher.vue:

<!-- your template here... -->

Vue internationalization: a simple guide to building a multilingual app 1

https://kazupon.github.io/vue-i18n/guide/locale.html
https://kazupon.github.io/vue-i18n/guide/locale.html

<script>
export default {
name: ‘LocaleSwitcher’,
data() {
return {
locales:
process.env.VUE_APP_TI18N_SUPPORTED_LOCALE.split(‘,’)
ks
ks
ks

</script>

process.env enables us to access environment variables. Then we just take the
required value and use split() to produce an array.

Lastly,add a switchLocale() method:

<script>
export default {
name: ‘LocaleSwitcher’,
methods: { // <-----=--———-- -
switchLocale(locale) {
if (this.$%$il8n.locale !== locale) {
this.$i18n.locale = locale;
ks
ks
5
data(Q) {

return {
locales:
process.env.VUE_APP_TI18N_SUPPORTED_LOCALE.split(‘,’)

¥
}
}

</script>

this.$118n.locale allows us to get and set the current locale of the app. We
first check if the requested locale is different from the currently chosen one and

update it if necessary.

Vue internationalization: a simple guide to building a multilingual app 12

To make the list elements look more like links, you may add the following
scoped style to the component:

<style scoped>

1i {
text-decoration: underline;
color: #459CE7;
cursor: pointer;

ks
</style>

Once you are ready, use the new component within App . vue:

<template>
<div id="app”>
<LocaleSwitcher /> <!-- <-——---commmm - >
<p>{{ $t(‘main.welcome’, {company: ‘Lokalise’}) }}
</p>
</div>
</template>

<script>
import LocaleSwitcher from
¢./components/LocaleSwitcher.vue’ // <-------------

export default {
name: ‘App’,
components: {
LocaleSwitcher // <-----—-———----

¥
¥

</script>

Reload the application, proceed to localhost: 8080 and try clicking the switch-
er links. The welcoming message should be translated to the chosen language.
Good job!

Vue internationalization: a simple guide to building a multilingual app 13

Exploring Vue 118n Features

Pluralization

One of the most common internationalization tasks is the text
properly. To demonstrate it in action, let’s show how many new messages the
user has. Start with the English translation and provide the new_message key:

{
“main”: {
“welcome”: “Hello from {company}!”,
“new_message”: “no messages | one message | {count} messages”
ks
ks

Here we provide three possible translations separated with pipeline ()
which will be picked automatically, based on the passed number. The first

translation (no messages) is optional and may be omitted.

Pluralization rules in English are quite simple as the word may have only two

forms. For Russian, things become more complex:

“main”: {
“welcome”: “Bac npuBeTtcTtByeT {company}!”,
“new_message”: “HeT coobuweHun | {count} coobueHne | {count} coobueHus

| {count} coobuweHun”

¥
}

Unfortunately, Vue I118n does not support complex pluralization out of the
box. . Modify the 118n. js file like

this:

Vue internationalization: a simple guide to building a multilingual app 14

https://kazupon.github.io/vue-i18n/guide/pluralization.html
https://kazupon.github.io/vue-i18n/guide/pluralization.html#custom-pluralization

import Vue from ‘vue’
import VueIl8n from ‘vue-il8n’

const defaultImpl = VueIl8n.prototype.getChoicelndex // <------------
VueIl8n.prototype.getChoiceIndex = function(choice, choicesLength) { //

<-—---—------ Add support for Russian pluralization
// this === VueIl8n instance, so the locale property also exists here
if (this.locale !'== ‘ru’) {

return defaultImpl.apply(this, arguments) // default implementation
b

if (choice === 0) {
return 0;

}

const teen = choice > 10 && choice < 20;
const endsWithOne = choice % 10 === 1;

if (lteen && endsWithOne) {
return 1;

if (lteen && choice % 10 >= 2 && choice % 10 <= 4) {
return 2;

return (choiceslLength < 4) ? 2 : 3;

Vue.use(VueIl8n)

// other code goes here...

Basically, we are explaining what translation to choose based on the provided
number. Pluralization algorithms for all languages may be found on the
Unicode CLDR website.

With the above code in place, we may implement pluralization in the code.
Add a new line to the App . vue file:

Vue internationalization: a simple guide to building a multilingual app 15

https://www.unicode.org/cldr/charts/29/supplemental/language_plural_rules.html

<template>
<div id="app”>
<LocaleSwitcher />
<p>{{ $t(‘main.welcome’, {company: ‘Lokalise’}) }}</p>
<p>{{ $tc(‘main.new_message’, 10) }}</p> <!-- <-------- add this -->
</div>
</template>

Note that in order to employ pluralization, you need to use a $tc function. It

accepts the following three arguments:
Translation key.
The number to use in pluralization.
Optional object with the interpolation values. By default, the second

argument will be provided as an interpolation value, but you may

override it. For example: $tc(‘main.new_message’, 10, {count: “Not

many”}).

Date and Time

The next common feature that I would like to show you is localization of date

and time. In order to support it, we need to provide one or more datetime

formats within the i18n.js:

// other code goes here...

const dateTimeFormats = {
‘en’: {
short: {
year: ‘numeric’,
month: ‘short’,
day: ‘numeric’

Vue internationalization: a simple guide to building a multilingual app 16

https://kazupon.github.io/vue-i18n/guide/datetime.html
https://kazupon.github.io/vue-i18n/guide/datetime.html

ks
s
‘ru’: {
short: {
year: ‘numeric’,
month: ‘short’,
day: ‘numeric’
ks
ks

export default new VueIl8n({
locale: process.env.VUE_APP_TI18N_LOCALE |l ‘en’,
fallbackLocale:
process.env.VUE_APP_I18N_FALLBACK_LOCALE Il ‘en’,

messages: loadLocaleMessages(),
dateTimeFormats // <--------- make sure to add this line as well!

19)

For both locales we have added a new format called short:

—-% The year and day will be provided as numbers.

nv-% The name of the month will be displayed in a shortened form (for

example, Apr).

You can add other formats as necessary by using the options listed in ECMA-402.

Now, let’s localize the current date using the short format. Add a new line to

the App.vue file as follows:

<template>
<div id="app”>
<LocaleSwitcher />
<p>{{ $t(‘main.welcome’, {company: ‘Lokalise’}) }}</p>
<p>{{ $tc(‘main.new_message’, 10) }}</p>
<p>{{ $d(new Date(), ‘short’) }}</p> <!-- <——--—--ommmmo —-
</div>
</template>

Vue internationalization: a simple guide to building a multilingual app

17

https://www.ecma-international.org/ecma-402/2.0/#sec-intl-datetimeformat-constructor

$d is a function that will perform localization. new Date() returns the current

date, whereas short is the name of our format. Sweet!

The last Vue I18n feature that I am going to show you is formatting numbers

and representing them with the proper currencies. To add currency formats, we

need to tweak the 118n. js file again:

// other code goes here...

const numberFormats = {
‘en’: {
currency: {
style: ‘currency’, currency: ‘USD’
ks
3,
‘ru’: {
currency: {
style: ‘currency’, currency: ‘RUB’
ks
ks
ks

export default new VueIl8n({
locale: process.env.VUE_APP_T18N_LOCALE || ‘en’,
fallbackLocale: process.env.VUE_APP_I18N_FALLBACK_LOCALE Il ‘en’,
messages: loadLocaleMessages(),
dateTimeFormats,
numberFormats // <------ Make sure to add this line!

»

So, for the English locale we’ll be using US dollars, whereas for Russian we’ll

use roubles.

Next, add another new line to the App . vue file:

Vue internationalization: a simple guide to building a multilingual app 18

https://kazupon.github.io/vue-i18n/guide/number.html#custom-formatting
https://kazupon.github.io/vue-i18n/guide/number.html#custom-formatting

<template>
<div id="app”>
<LocaleSwitcher />
<p>{{ $t(‘main.welcome’, {company: ‘Lokalise’}) }}</p>
<p>{{ $tc(‘main.new_message’, 10) }}</p>
<p>{{ $d(new Date(), ‘short’) }}</p>
<p>{{ $n(100, ‘currency’) }}</p> <!-- <-—--—----o- - >
</div>
</template>

$nis a function for localizing numbers. It accepts the actual number and the

name of the format.

Vue I18n docs provide some more examples explaining how to add custom

formatting for your numbers.

Vue internationalization: a simple guide to building a multilingual app

19

https://kazupon.github.io/vue-i18n/guide/number.html#custom-formatting
https://kazupon.github.io/vue-i18n/guide/number.html#custom-formatting

Setting the Language as a
Route Parameter

At this point, our application is translated into two languages. However, we do
not persist the chosen locale anywhere. Also, whenever a user visits our site, an
English locale is being set by default. In this section we’ll see how to enhance
our application further with the help of

Installing Vue Router

The first step is installing Vue Router itself:

vue add router

During the installation, choose to use history mode.
The above command is going to perform the following operations:
1. Tweakmain. js to enable routing.

Add sample router links and a router-view to the App.vue.
Create a router/index. js file with initial configuration.

Sl S

Add two sample views (within the views folder).

Managing Views

What I would like to do next is tweak the App . vue file and update the sample
views created for us in the previous section. Start by tweaking the App . vue.
We are going to bring the language switcher back as well as introduce a new
MainMenu component:

Vue internationalization: a simple guide to building a multilingual app 20

https://router.vuejs.org/

<template>
<div id="app”>
<LocaleSwitcher />
<MainMenu />
<router-view/>
</div>
</template>

<script>

import LocaleSwitcher from
‘@/components/LocaleSwitcher.vue’

import MainMenu from ‘@/components/MainMenu.vue’

export default {

name: ‘App’,
components: {
LocaleSwitcher,
MainMenu
ks
ks
</script>

Next, create a new components/MainMenu.vue file which is going to contain the

router links generated for us during router installation:

<template>
<div id="nav”>
<router-link to="/">{{ $t(‘menu.home’) }}</router-link> |
<router-link to=”"/about”>{{ $t(‘menu.about’) }}</router-link>
</div>
</template>

Add new translations for the links. English:

“home”: “Home”,
“about”: “About”

Vue internationalization: a simple guide to building a multilingual app

21

s
“main”: {
“welcome”: “Hello from {company}!”,
“new_message”: “no messages | one message | {count} messages”

by
“about”: {

“welcome”: “Welcome to the About page!”
}

And Russian:

{
“menu”: { // <---------------
“home”: “InaBHas”,
“about”: “0 Hac”
},
“main”: {
“welcome”: “Bac npuBeTcTByeT {company}!”,
“new_message”: “HeT coobuweHun | {count} coobueHue | {count} coobueHns
| {count} coobueHunn”
}7
“about”: {
“welcome”: “llobpo noxasoBdTb HA CcTpaHuuy 0 Hac!”
ks
%

Now we need to tweak the sample views generated for us. The views/Home.vue
will contain the translated messages which were displayed on the main page:

<template>
<div class="home”>
<p>{{ $t(‘main.welcome’, {company: ‘Lokalise’}) }}</p>
<p>{{ $tc(‘main.new_message’, 10) }}</p>
<p>{{ $d(new Date(), ‘short’) }}</p>
<p>{{ $n(100, ‘currency’) }}</p>
</div>
</template>

Vue internationalization: a simple guide to building a multilingual app 22

The views/About . vue will simply display a welcoming message:

<template>
<div class="about”>
<p>{{ $t(‘about.welcome’) }}</p>
</div>
</template>

Provide translations for the about .welcome key:

“about”: {
“welcome”: “Welcome to the About page!”
I
“about”: {
“welcome”: “[lobpo noxanoBaTb Ha cTpaHuuy O Hac!”
ks

Adding Routes with Vue 118n Support

The views are ready, and we can proceed to our routes. Replace the contents of the

router/index. js file with the following;:

import Vue from ‘vue’
import VueRouter from ‘vue-router’
import 118n from ¢../il18n’

function load(component) {
// ‘@ 1is aliased to src/components
return () => import(@/views/${component}.vue)

}

Vue internationalization: a simple guide to building a multilingual app

23

Vue.use(VueRouter)

load() is a small helper function that we will use to load the proper view based on

the current router.

Now add the actual routes as follows:

// other code .

const routes = [{
path: ¢/:locale’,
component: {
template: “<router-view></router-view>’

)

5
children: [{
path: ¢’
name: ‘Home’,
component: load(‘Home’)
3,
{
path: ‘about’,
name: ‘About’,
component: load(‘About’)
ks
]

/:locale is a variable part of the route which will equal either en or ru. For
example: Localhost:8080/en/about. There are also two child routes for our
Home and About views. Home is the default page; therefore, its path is set to an
empty string (it can be accessed with Tocahost:8080/en).

When the /:locale page is initially entered, we need to set a proper locale based

on the parameter. Therefore, add a beforeEnter property:

Vue internationalization: a simple guide to building a multilingual app 24

const routes = [{
path: ¢/:locale’,
component: {
template: “<router-view></router-view>”

5
beforeEnter: (to, from, next) => { // <--—--—-————-

const locale = to.params.locale; // 1

const supported_locales = process.env.VUE_APP_I18N_SUPPORTED_LOCALE.
split(¢,’); // 2

if (!supported_locales.includes(locale)) return next(‘en’); // 3

if (il1l8n.locale !== locale) { // 4
i18n.locale = locale;

ks

return next() // 5

1,
children: [

// children here...

The logic is pretty simple:

1. We fetch the requested locale from the route by using to.params.locale.

2. We also generate an array of supported locales.

3. If the requested locale is not supported (that is, not found in the array), we set
the locale to English and redirect the user to localhost:8080/en.

4. Ifthelocale is supported and the current locale is different, we switch to the
chosen language.

5. Lastly, navigate the user to the page.

We may also handle all other routes and redirect the user to the default locale:

const routes = [{
path: ‘/:locale’
// other code for the /:locale route

Vue internationalization: a simple guide to building a multilingual app 25

path: ¢*’|

redirect() {

return process.env.VUE_APP_T18N_LOCALE;
ks

Lastly, create the router:

// routes and other code ...
const router = new VueRouter({
mode: ‘history’,

base: process.env.BASE_URL,
routes

D)

export default router

The routes are now configured properly!

The links within the components/MainMenu. vue file also require some tweaks:

<template>
<div id="nav”>
<router-link :to="{ name: ‘Home’, params: { lang: this.$i18n.locale }}”>
{{ $t(‘menu.home’) }}

</router-link>

<router-link :to="{ name: ‘About’, params: { lang: this.$il1l8n.locale

Vue internationalization: a simple guide to building a multilingual app 26

}}”>
{{ $t(‘menu.about’) }}
</router-link>

Here we utilize named routes (Home and About respectively). These named routes
were set in the previous step using the following line: name: ‘Home’. For each

route we also provide the currently set locale.

If you boot the server now, you will probably get an error saying that the template
compiler is not available. To fix it, add the following property to the vue. config. js
file:

module.exports = {
runtimeCompiler: true, // <-------
pluginOptions: {
// other options...

}
¥

The navigational links and language switcher should work now. One problem,
however, is that after changing a language, the locale is not being updated in the
URL. Let’s fix that as well!

Rewriting URL After Locale Switch

Updating a URL after a locale switch is actually a very simple thing to do. We need

to add a single line to the components/LocaleSwitcher.vue file:

// your template...
<script>

export default {
name: ‘LocaleSwitcher’,

Vue internationalization: a simple guide to building a multilingual app 27

methods: {
switchLocale(locale) {
if (this.$i18n.locale !'== locale) {
this.$118n.locale = locale;
const to = this.$router.resolve({ params: {locale} }) // <--------

}
ks
s
data() {
// data...

}
}

</script>

First, we are generating the proper URL based on the chosen locale. Then,
this.$router.push will navigate the user to a new URL (it is possible to return to

the previous one thanks to the history mode).

Now if you change the locale, the URL will be updated for you. Try playing around

with the links to make sure everything works properly!

Vue internationalization: a simple guide to building a multilingual app 28

https://router.vuejs.org/guide/essentials/navigation.html#router-push-location-oncomplete-onabort

Introducing Lazy Loading

Our application is working but there is one important feature missing:

. Usually, loading translations for all languages is an
overKkill. Therefore, in this section we will see how to implement this feature.
Our application is working but there is one important feature missing: lazy
loading of translation files. Usually, loading translations for all languages in an
overKkill. Therefore, in this section we will see how to implement this feature.

Introducting Translation Plugin

Before implementing lazy loading, however, it would be a good idea to refactor
our code. Specifically, I would like to extract all localization-related logic to a

separate file. Therefore, let’s create a new plugins/Translation. js file:

import { i18n } from ¢../i18n’

const Trans = {
get defaultLocale () {
return process.env.VUE_APP_I18N_LOCALE
5
get supportedLocales() {
return
process.env.VUE_APP_I18N_SUPPORTED_LOCALE.split(*,’)
5
get currentLocale() {
return il8n.locale
s
set currentLocale(locale) {
i18n.locale = locale

export { Trans }

Vue internationalization: a simple guide to building a multilingual app 29

https://kazupon.github.io/vue-i18n/guide/lazy-loading.html
https://kazupon.github.io/vue-i18n/guide/lazy-loading.html

There are three getters to read:
The default locale
The list of supported locales
The currently set locale
Also, we have a method to set an attribute to change the current language.

Now, let’s implement a method to change the language and load the necessary
translation file:

const Trans = {
// ...
changelLocale(locale) {
if (!Trans.islLocaleSupported(locale)) return
Promise.reject(new Error(‘Locale not supported’))
if (i18n.locale === locale) return
Promise.resolve(locale)
return Trans.loadLocaleFile(locale).then(msgs => {
118n.setlLocaleMessage(locale, msgs.default || msgs)
return Trans.setIl8nlLocaleInServices(locale)
iD)
ks
}

export { Trans }

This method is based on promises. If the locale is not supported, then we just
reject with an error message. If the chosen locale is the same, we resolve the
promise with that locale. Otherwise, load the corresponding translation file, pass
translation messages to Vue I18n, switch the locale, and return it.

Here is the method to check if the requested locale is supported:

Vue internationalization: a simple guide to building a multilingual app 30

isLocaleSupported(locale) {
return Trans.supportedLocales.includes(locale)

}

Method to load a translation file:

loadLocaleFile(locale) {
return import(@/locales/${locale}.json")

}

Method to switch locale:

setIl8nLocaleInServices(locale) {
Trans.currentlLocale = locale
document.querySelector(‘html’).setAttribute(‘lang’, locale)
return locale

Note that it also updates the 1ang attribute of the html tag.

Let’s also add a special method that will be used in our routing:

routeMiddleware(to, from, next) {

const locale = to.params.locale

if (!Trans.islLocaleSupported(locale)) return
next(Trans.defaultLocale)

return Trans.changelLocale(locale).then(() => next())

}

This method has the same logic as the one provided in the beforeEnter()

method, but it relies on the newly created plugin.

Vue internationalization: a simple guide to building a multilingual app 31

Lastly, I'd like to introduce a special method to generate localized routes. It is
going to accept the route name:

118nRoute(to) {
return {
...to,
params: {locale: this.currentlLocale, ...to.params}

}
}

Our plugin is ready so we may refactor the code based on it!

Refactoring 118n Config

The next step is to update our 118n. js file to take advantage of the new
Translation plugin. Here is a new version of this file:

import Vue from ‘vue’

import VueIl8n from ‘vue-il8n’

import en from ‘@/locales/en.json’ // <----—----—--—-- 1

VueIl8n.prototype.getChoiceIndex = function(choice, choicesLength) {
/7.

Vue.use(VuelIl8n)

const dateTimeFormats = {

/7

const numberFormats = {
/7.

export const 118n = new Vuell8n({ // <-------------- 2
locale: process.env.VUE_APP_T18N_LOCALE |1 ‘en’,

Vue internationalization: a simple guide to building a multilingual app

32

fallbackLocale:

process.env.VUE_APP_T18N_FALLBACK_LOCALE || ‘en’,
messages: { en }, // <--—---------—- 3
dateTimeFormats,
numberFormats

D)

Main things to note here:

1. Initially, we are loading only the English translation file (as English is set as
the default locale).

2. We are exporting an i18n constant instead of using just export default.

3. messages now contains only the imported English translations.

4. loadLocaleMessages function is removed because we have implemented
our own loader inside the Translation plugin.

Refactoring Main File and Routes

Next, adjust the contents of the main. js file in the following way:

import Vue from ‘vue’

import App from ‘./App.vue’

import { i18n } from ¢./i18n’ // <------------- 1
import router from °./router’

import { Trans } from ¢./plugins/Translation’

Vue.prototype.$il8nRoute = Trans.il8nRoute.bind(Trans) // <------------—- 2
Vue.config.productionTip = false
new Vue({

118n,

router,

render: h => h(App)
1) . $mount(‘#app’)

Vue internationalization: a simple guide to building a multilingual app 33

There are two things to note here:
1. Make sure to import all the necessary modules properly.
2. Allow $i18nRoute to be used in your templates.

Next, tweak the router/index. js file:

import Vue from ‘vue’
import VueRouter from ‘vue-router’
import { Trans } from ‘@/plugins/Translation’ // <--------—-----

function load(component) {
// ..

Vue.use(VueRouter)

const routes = [{
path: ‘/:locale’,
component: {
template: “<router-view></router-view>”
5
beforeEnter: Trans.routeMiddleware, // <----—-—-—--------- 2
children: [
/...
]
3,
{
path: “*’
redirect() {
return Trans.defaultlLocale; // <-----—————------ 3

const router = new VueRouter({
mode: ‘history’,
base: process.env.BASE_URL,
routes

19)

export default router

Vue internationalization: a simple guide to building a multilingual app

Note the following:

1. We are now importing only the Translation plugin which contains all locale-
related logic.

2. beforeEnter now delegates to the routeMiddleware. This way we are
making our code less cluttered and separate the logic into the proper files.

3. The default locale is also fetched using the new plugin.

Great job!

Refactoring Components

We are nearly done with all the refactoring. The last thing to take care of are our
components. Start with the components/LocaleSwitcher.vue:

<template>

<li v-for="1locale in supportedLocales” :key="locale” @click="switchlLo-
cale(locale)”> <!-- <------------ 1-->
{{ $t(‘menu.’ + locale) }} <!-- <----------—-- 2 -—>

/Translation’ // <------------ 3

export default {
name: ‘LocaleSwitcher’,
computed: { <------------ 4
supportedLocales () {
return Trans.supportedlLocales
3,

1,
methods: {

switchLocale(locale) {
if (this.$118n.locale !== locale) {
const to = this.$router.resolve({ params: {locale} })

Vue internationalization: a simple guide to building a multilingual app 35

return Trans.changeLocale(locale).then(() => { <--------—-—-- 5
this.$router.push(to.location)
D)
3
ks
%
ks

</script>

Main things to note:

1. We are using the supportedLocales attribute which is defined below.
We also translate the locale codes.
Don’t forget to load the Translation plugin.

B D

Introduce a new supportedlLocales computed attribute which relies on the
Translation.supportedLocales getter.
5. Locale is now also changed using our plugin.

New English translations:

{
“menu”: {
“en”: “English”,
“ru”: “Russian”
/7 ...
}
// ...
}

Russian translations:

“menu”: {
“en”: “AHrnaunckunn”,
“ru”: “Pycckuin”

Vue internationalization: a simple guide to building a multilingual app 36

/7.

/7.

Finally, adjust the components/MainMenu. vue:

<template>
<div id="nav”>
<router-link :to="%$i18nRoute({ name: ‘Home’ })”>
{{ $t(‘menu.home’) }}

</router-link>

<router-link :to="%$i18nRoute({ name: ‘About’ })”>
{{ $t(‘menu.about’) }}
</router-1link>
</div>
</template>

Here we are taking advantage of the $118nRoute() helper to generate localized

routes based on the currently set locale.

At this point you may boot your application and make sure everything is

working!

Vue internationalization: a simple guide to building a multilingual app

37

Reading User Preferred
Language

The very last thing I wanted to should you today is the ability to adjust the
initial locale based on the user’s preferred language. Usually, browsers send
preferred language in the request so we can take advantage of this fact. To get
started, install axios library which will be used to work with the headers:

npm install axios

Import axios inside plugins/Translation. js file:

import axios from ‘axios’

/7.

Add a new method that will try to read the preferred locale and check whether

it is supported:

getUserSupportedLocale() {
const userPreferredLocale = Trans.getUserLocale() // <----—————----- 1

if (Trans.islLocaleSupported(userPreferredLocale.locale)) { // <---------

-——= 2
return userPreferredLocale.locale

if
(Trans.islLocaleSupported(userPreferredLocale.localeNoIS0)) { // <---------

---- 3
return userPreferredLocale.localeNoISO

Vue internationalization: a simple guide to building a multilingual app 38

https://www.npmjs.com/package/axios

}

return Trans.defaultlocale // <------------- 4

The logic of this method is rather simple:

1. We read the preferred locale.
If the app supports this locale, return it.
If the locale is unknown, try to strip the ISO code and check again.

= R

Finally, if both checks were unsuccessful, return the default locale.

Here is the implementation of the getUserLocale() method:

getUserLocale() {

const locale = window.navigator.language || window.navigator.userLan-
guage || Trans.defaultLocale // <----------- 1
return {
locale: locale, <-------------- 2
localeNoISO: locale.split(‘-’)[0] <------------- 3
3

}

1. Try to read the preferred language. If the preferred language is not set,
simply use the default locale.

2. Return full locale (for example, en-us) as the first attribute of the object.

3. Return locale without the ISO part (for example, en) as the second attribute.

Having these two methods in place, adjust the routeMiddleware method:

routeMiddleware(to, from, next) {
const locale = to.params.locale
if (!Trans.islLocaleSupported(locale)) return
next(Trans.getUserSupportedLocale()) // <----------- 1
return Trans.changelocale(locale).then(() => next())

}

Vue internationalization: a simple guide to building a multilingual app 39

There is only one change. If the requested locale is not supported, we fetch the

preferred locale.

Lastly, set the Accept-language header using axios:

setI1l8nLocaleInServices(locale) {
Trans.currentlLocale = locale
axios.defaults.headers.common[‘Accept-Language’] =
locale // <----——----------
document.querySelector(‘html’).setAttribute(‘lang’,
locale)
return locale

That’s all! Now the application will try to use the language preferred by the

current visitor.

Vue internationalization: a simple guide to building a multilingual app 40

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept-Language
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept-Language

Conclusion

In this tutorial we have seen how to implement internationalization and
localization using the Vue I18n solution. We have learned how to configure

this library, perform translations, use pluralization, and localize datetime and
numbers. On top of that, we’ve added a language switcher, enabled Vue Router,
introduced lazy loading, and support for the user preferred locale. Not bad for
a single article!

Of course, this demo app can be enhanced further. To get some inspiration you
may check the repo created by Dobromir Hristov. Also,
you may be interested in a which scans your project and

extracts translations into JSON files.

Don’t hesitate to if you have any additional questions or concerns.

Vue internationalization: a simple guide to building a multilingual app M

https://github.com/dobromir-hristov/vue-i18n-starter
https://pixari.github.io/vue-i18n-extract
mailto:contact%20us?subject=hello%40lokalise.com

lokalise

